$$\begin{split} \overline{\Pi} &:= \left\{ z \in \mathbb{C} : |z| = 1 \right\}, \\ \mathbb{C}(\overline{\Pi}) &:= \right\} \text{ all continuous functions defined on } \overline{\Pi} \right\}, \\ \int_{\overline{\Pi}} f(z) dz &:= \frac{1}{2\pi} \int_{0}^{2\pi} f(e^{it}) dt \, . \\ \text{An inner product on } \mathbb{C}(\overline{\Pi}) \text{ is given by } (f, g) &= \int_{\overline{\Pi}} f(z) \overline{g(z)} dz \, . \\ \mathbb{L}^{2}(\overline{\Pi}) \text{ is the completion of } \mathbb{C}(\overline{\Pi}) \text{ under the norm } \|\cdot\|_{2} \text{ induced} \\ \text{ by the inner product } . \\ f_{n}(z) &= z^{n} \, . \end{split}$$

Proposition

$$\{f_n: n \in \mathbb{Z}\}$$
 is an orthonormal basis for $L^2(\mathbb{T})$
 $Proof:$ (i) Orthogonal:
For any $M, N \in \mathbb{Z}$ with $m \neq N$,
 $(f_n, f_m) = \int_{\mathbb{T}} f_n(\mathbb{Z}) f_m(\mathbb{Z}) d\mathbb{Z}$

$$= \int_{\overline{\Pi}} z^{n} \overline{z}^{m} dz$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} e^{i(n-m)t} dt$$

$$= \frac{1}{2\pi(n-m)} e^{i(n-m)t} \Big|_{0}^{2\pi}$$

$$= 0$$
(ii) Normal:
For any $N \in \mathbb{Z}$,
 $(f_{n}, f_{n}) = \int_{\overline{\Pi}} z^{n} \overline{z}^{n} dz$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} e^{i(n-n)t} dt$$

$$= 1$$
(iii) Maximul:
By Proportion 14.8, it suffices to show
if $(g, f_{n}) = 0$ for all n , then $g = 0$.
Store - Weiersbrass Theorem:
Every element in $L^{2}(\overline{\Pi})$ can be approximated
by polynomials with respect to $11 \cdot 11_{2}$

For any
$$g \in L^{2}(T)$$
, there exists a sequence
 $(P_{m}) \circ f$ polynomials ends that $||g - P_{m}||_{2} \rightarrow 0$
as $m \rightarrow \infty$.
Suppose $(g, f_{n}) = 0$ for all $n \in \mathbb{Z}$.
Then $(g, P_{m}) = \circ$ for all m .
 $||g - P_{m}||_{2}^{2} = (g - P_{m}, g - P_{m}) = ||g||_{2}^{2} + ||P_{m}||_{2}^{2}$.
Then $||g||_{2}^{2} \leq f_{m} ||g - P_{m}||_{2}^{2} = 0$.
Hence, $g = 0$.

Ŋ

Reca	И			
Coro	Hary 14.12	2		
Let	X he a	. separated	Hilbert	space
If	dim X = v	n, then X	ς = C ^η .	
Ц	dim X =	is, then	$X = \ell^2.$	

Notice that { all the polynomials | is constable. Again, by Stone-Weierstracs Theorem, $L^{2}(T)$ is a separate Hilbert space. Since $\dim L^{2}(T) = \infty$, by Condory 14.12, $L^{2}(T) \cong \ell^{2}$.