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(iii) Maximal :
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.
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it suffices to show

if 18 , ful = 0 for alln ,
then g= 0.

Stone - Weierstrass Theorem :

Every element in LCT) can be approximated

by polynomials with respect to 11 . 11



For
any gEL"(II) , there exists a sequence

(Pml of polynomials such that 118-Pull->

as m + c.

Suppose (g , ful = 0 for all neX.

Then 18 , Pm) = 0 for all m.

118-Pull? = 18-Pm , g-Pm) = 11g1I2+ 11Pmbm·

Then 11812 - timlly-Pull = 0.
Hence

, g = 0.
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Corollary 14
.
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Let X be a separated Hilbert space.

If dim X = n
,
then X = &"

If dim X = 0
,

then X = e 2.



Notice that fall the polynomials) is countable.

Again , by Stone - Weierstrass Theorem
,
((I) is

a separate Hilbert space .

Since dimLT) = 0,

by Corollary 14 . 12
,
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